1 Các chủ đề thường gặp
1.1 Person
1.1.1 Statistician
Samiran Sinha
https://samiransinha.github.io/teaching/
Laurent Smeets
https://www.rensvandeschoot.com/colleagues/laurent-smeets/
1.1.2 Psycholinguist
Luca Campanelli
https://www.lcampanelli.org/
1.2 Dataset
Vanderbilt Biostatistics
https://hbiostat.org/data/
Datasets for the survival data modelling on engineering applications
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data#overviewHardDriveData
Clinical proteomic datasets from NCI
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
Kaggle, a platform for different kinds of data used for data science competitions.
https://www.kaggle.com/data
It is a repository of shared datasets available through AWS resources. https://registry.opendata.aws/`
1.3 Mixed effects model
Mixed effects model analysis using R
http://samiransinha.github.io/files/teaching/685part1.html
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software 67, no. 1 (2015).
https://doi.org/10.18637/jss.v067.i01
http://book.thuviencanhan.com:8033/results?query=%22Bates+et+al.+-+2015+-+Fitting+Linear+Mixed-Effects+Models+Using+lme4.pdf%22&dir=%3Call%3E&after=&before=&sort=relevancyrating&ascending=0&page=1
Bates, Douglas M. Lme4: Mixed-Effects Modeling with R. 2022.
https://people.math.ethz.ch/~maechler/MEMo-pages/lMMwR.pdf
Luca Campanelli. Introduction to mixed-effects modeling using the lme4 package.
https://web.archive.org/web/20230313184038/https://www.lcampanelli.org/mixed-effects-modeling-lme4/
LME4 Tutorial: Popularity Data
https://www.rensvandeschoot.com/tutorials/lme4/
Fixed vs Random vs Mixed Effects Models – Examples
https://vitalflux.com/fixed-vs-random-vs-mixed-effects-models-examples/
What is a difference between random effects-, fixed effects- and marginal model?
https://stats.stackexchange.com/questions/21760/what-is-a-difference-between-random-effects-fixed-effects-and-marginal-model
Concepts behind fixed/random effects models
https://stats.stackexchange.com/questions/33984/concepts-behind-fixed-random-effects-models
A brief introduction to mixed effects modelling and multi-model inference in ecology
https://pmc.ncbi.nlm.nih.gov/articles/PMC5970551/
1.4 Survival analysis
Hosmer, David W., Stanley Lemeshow, and Susanne May. Applied Survival Analysis: Regression Modeling of Time‐to‐Event Data. John Wiley & Sons, Ltd, 2008.
https://doi.org/10.1002/9780470258019.fmatter
http://book.thuviencanhan.com:8033/results?query=%22Hosmer+et+al.+-+2008+-+Applied+Survival+Analysis+Regression+Modeling+of+Time%E2%80%90to%E2%80%90Event+Data.pdf%22&dir=%3Call%3E&after=&before=&sort=relevancyrating&ascending=0&page=1
1.5 B-splines
A short note on B-splines, and two related files for computing spline basis functions R script, Fortran subroutines
http://samiransinha.github.io/files/teaching/note1.pdf
http://samiransinha.github.io/files/teaching/code4Splines.R
http://samiransinha.github.io/files/teaching/spline.f
https://samiransinha.github.io/teaching/
1.6 Epidemiology
1.6.1 Case-control study
Case-control studies in epidemiological research
http://samiransinha.github.io/files/presentation/TAMU_Vet_School_Nov2021.pdf
1.7 Single cell RNAseq
Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose-response study designs
https://samiransinha.github.io/files/presentation/WNAR2023_presentation.pdf
1.8 Multilevel analysis
Multilevel analysis: Techniques and applications
https://multilevel-analysis.sites.uu.nl/
1.9 Bayesian
Bürkner, (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1–28.
https://doi.org/10.18637/jss.v080.i01
Magnusson et al. (2019). Bayesian leave-one-out cross-validation for large data (2019)
https://proceedings.mlr.press/v97/magnusson19a/magnusson19a.pdf
Vehtari et al (2013). Understanding predictive information criteria for Bayesian models.
https://sites.stat.columbia.edu/gelman/research/published/waic_understand3.pdf
Vehtari et al. (2018). R-squared for Bayesian regression models
http://www.stat.columbia.edu/~gelman/research/unpublished/bayes_R2.pdf
Vehtari et al. (2019). Bayesian R2 and LOO-R2
https://avehtari.github.io/bayes_R2/bayes_R2.html
Vehtari et al. (2021). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC (with discussion). Bayesian Data Analysis.
https://projecteuclid.org/journals/bayesian-analysis/advance-publication/Rank-Normalization-Folding-and-Localization--An-Improved-R%CB%86-for/10.1214/20-BA1221.full
1.10 Randomness
https://en.wikipedia.org/wiki/Randomness#cite_note-5
1.11 Normal distribution
https://en.wikipedia.org/wiki/Normal_distribution
\[f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2 \sigma^2}}\]
1.12 Sample size
How to calculate sample size in randomized controlled trial?
https://pubmed.ncbi.nlm.nih.gov/22263004/